This effort aims to standardize the boot sequence on UEFI. Some notes:
- A large part of this ecosystem is based on U-Boot and Linux. Vendors have heavy investments in both projects and are not interested in large scale changes to their firmware architecture. The challenge for EBBR is to define a set of boot standards that reduce the amount of custom engineering required, make it possible for OS distributions to support embedded platforms, while still preserving the firmware stack that product vendors are comfortable with. Or in simpler terms, EBBR is designed to solve the embedded boot mess by adding a defined standard (UEFI) to the existing firmware projects (U-Boot).
- However, EBBR is a specification, not an implementation. The goal of EBBR is not to mandate U-Boot and Linux. Rather, it is to mandate interfaces that can be implemented by any firmware or OS project, while at the same time work with both Tianocore/EDK2 and U-Boot to ensure that the EBBR requirements are implemented by both projects.
- In general, EBBR compliant platforms should use dedicated storage for boot firmware images and data, independent of the storage used for OS partitions and the EFI System Partition (ESP). This could be a physically separate device (e.g. SPI flash), or a dedicated logical unit (LU) within a device (e.g. eMMC boot partition, [1] or UFS boot LU [2]).